Math 10A with Professor Stankova

Worksheet, Discussion \#6; Friday, 9/8/2017
GSI name: Roy Zhao

Domain

Problems

1. Find the domain of $\ln (x-3)$.

Solution: The domain of $\ln x$ is $(0, \infty)$. The linear shift $x-3$ shifts the function to the right by 3 and so we add 3 to the domain. This means that the domain of $\ln (x-3)$ is $(0+3, \infty+3)=(3, \infty)$.
2. Find the domain of $\sqrt{3 x-3}$.

Solution: The domain of \sqrt{x} is $[0, \infty)$. The linear shift $3 x-3$ acts by first shifting the graph right by 3 , then contracting by a factor of 3 . What this does to the domain is add 3 and then divide by 3 , so we get $[3, \infty)$ and then $[1, \infty)$ as the final domain.
3. Find the domain of $\frac{1}{2 x+1}$.

Solution: The domain is when the denominator is nonzero, so when $2 x+1 \neq 0$ or $x \neq \frac{-1}{2}$. So the domain is $\mathbb{R} \backslash\{-1 / 2\}$.
4. Find the domain of $\sqrt{3-x}$.

Solution: The domain is when $3-x \geq 0$ or when $x \leq 3$, meaning $(-\infty, 3]$.
5. Find the domain of $e^{2 x+1}$.

Solution: The domain of e^{x} is everything and so shifting it to the left and right and compressing it doesn't change it. So the domain is \mathbb{R}.
6. Find the domain of $\sqrt{9-(2 x+3)^{2}}$.

Solution: The domain of $\sqrt{9-x^{2}}$ is when $9-x^{2} \geq 0$ or when $x^{2} \leq 9$ or $x \in[-3,3]$. Then applying the linear shift $2 x+3$ first shifts the domain to the left by 3 and then compresses it by a factor of 2 . Doing so gives $[-3,3]$, then $[-6,0]$, then finally $[-3,0]$.
7. Find the domain of $\sqrt{(3 x+1)^{2}-4}$.

Solution: The domain of $\sqrt{x^{2}-4}$ is when $x^{2} \geq 4$ or $(-\infty,-2] \cup[2, \infty)$. The linear shift $3 x+1$ shifts the domain left by 1 and then compresses it by a factor of 3 . This gives $(-\infty,-3] \cup[1, \infty)$ and then $(-\infty,-1] \cup[1 / 3, \infty)$ as the final answer.
8. Find the domain of $\sqrt{4-(1-2 x)^{2}}$.

Solution: The domain of $\sqrt{4-x^{2}}$ is $[-2,2]$. Then the linear transformation $1-2 x=$ $-2 x+1$ shifts the graph left by 1 and then reflects it across the y axis and compresses it by a factor of 2 . So we go from $[-2,2]$ to $[-3,1]$, to $[-1,3]$ to $[-1 / 2,3 / 2]$.

Range

Problems

9. Find the range of $2 e^{x}+1$.

Solution: The range of e^{x} is $(0, \infty)$. The linear shift first stretches the range by 2 then shifts it up 1 to get $(0, \infty)$ again and then $(1, \infty)$ as the final range.
10. Find the range of $6 \sin x+3$.

Solution: The range of $\sin x$ is $[-1,1]$. The range after multiplying it by 6 and adding 3 is $[-6,6]$ and then $[-3,9]$.
11. Find the range of $-2 \cos x+1$.

Solution: The range of $\cos x$ is $[-1,1]$ and multiplying by -2 gives $[-2,2]$. Finally we add 1 to the range to get $[-1,3]$.
12. Find the range of $5 \arctan (x)-\pi$.

Solution: The range for $\arctan (x)$ is $(-\pi / 2, \pi / 2)$ so the range of $5 \arctan (x)-\pi$ is $(-5 \pi / 2-\pi, 5 \pi / 2-\pi)=(-7 \pi / 2,3 \pi / 2)$.
13. Find the range of $\frac{3}{x+2}-1$.

Solution: The range of $\frac{1}{x}$ is $\mathbb{R} \backslash\{0\}$. The shift of $x+2$ changes the domain but not the range. Then multiply by 3 and subtracting 1 gives a range of $\mathbb{R} \backslash\{3 \cdot 0-1\}=\mathbb{R} \backslash\{-1\}$.
14. Find the range of $2 \arcsin (6 x)+1$.

Solution: The range of $\arcsin (x)$ is $[-\pi / 2, \pi / 2]$. Multiplying the range by 2 and adding 1 gives a range of $[-\pi+1, \pi+1]$.
15. Find the range of $2-\arccos (3 x+2)$.

Solution: The range of $\arccos (x)$ is $[0, \pi]$. The linear shift $3 x+2$ shifts the domain but not the range. So the new range is $[2-\pi, 2-0]=[2-\pi, 2]$.
16. Find the range of $-4 \sqrt{x}+2$.

Solution: The range of \sqrt{x} is $[0, \infty)$ so the range of $-4 \sqrt{x}+2$ is $(-4 \infty+2,-4 \cdot 0+2]=$ $(-\infty, 2]$.

Tangent Lines

Problems

17. Find the tangent line to $3 x-2$ at $x=-2$.

Solution: The equation is $y-y_{0}=m\left(x-x_{0}\right)$ and so the line is $y-(3 \cdot-2-2)=$ $3(x-(-2)) \Longrightarrow y=3 x-2$.
18. Find the tangent line to $-x^{2}$ at $x=1$.

Solution: Using the point slope formula with $f(x)=-x^{2}$ gives

$$
y-f(1)=f^{\prime}(1)(x-1) \Longrightarrow y+1=-2(x-1) \Longrightarrow y=-2 x+1
$$

19. Find the tangent line to $\frac{1}{2 x}$ at $x=-4$.

Solution: We use the point slope formula with $f(x)=1 /(2 x)$ and get

$$
y-f(-4)=f^{\prime}(-4)(x-(-4)) \Longrightarrow y-(-1 / 8)=-1 / 32(x+4) \Longrightarrow y=\frac{-x}{32}-\frac{1}{4} .
$$

20. Find the tangent line to x^{3} at $x=-1$.

Solution: We use the point slope formula with $f(x)=x^{3}$ to get

$$
y-f(-1)=f^{\prime}(-1)(x-(-1)) \Longrightarrow y-(-1)=3(-1)^{2}(x+1) \Longrightarrow y=3 x+2
$$

21. Find the tangent line to \sqrt{x} at $x=9$.

Solution: Use the point slope formula with $f(x)=\sqrt{x}$ to get

$$
y-f(9)=f^{\prime}(9)(x-9) \Longrightarrow y-3=\frac{1}{6}(x-9) \Longrightarrow y=\frac{x}{6}+\frac{3}{2} .
$$

22. Find the tangent line to $6 e^{x}$ at $x=2$.

Solution: Use the point slope formula to get

$$
y-f(2)=f^{\prime}(2)(x-2) \Longrightarrow y-6 e^{2}=6 e^{2}(x-2) \Longrightarrow y=6 e^{2} x-6 e^{2} .
$$

23. Find the tangent line to $4 \cdot 7^{x}$ at $x=1$.

Solution: We use the point slope formula to get

$$
y-f(1)=f^{\prime}(1)(x-1) \Longrightarrow y-28=28 \ln 7(x-1) \Longrightarrow y=28 x \ln 7+28-28 \ln 7 .
$$

24. Find the tangent line to $\left(e^{x}+2\right)\left(e^{x}-2\right)$ at $x=2$.

Solution: We can use the point slope formula with the expression expanded to get $f(x)=e^{2 x}-4$:

$$
y-f(2)=f^{\prime}(2)(x-2) \Longrightarrow y-e^{4}+4=2 e^{4}(x-2) \Longrightarrow y=2 e^{4} x-3 e^{4}-4 .
$$

25. Find the tangent line to $\frac{x^{2}-9}{x-3}$ at $x=0$.

Solution: We can simplify the function to get $\frac{x^{2}-9}{x-3}=x+3$. The tangent line to a line is just that line, so $y=x+3$.
26. Find the tangent line to $\sqrt[3]{x} / \sqrt{x}$ at $x=1$.

Solution: We can simplify it to get $x^{-1 / 6}$. With this, we can calculate the tangent line with the point slope to get

$$
y-1=\frac{-1}{6}(x-1) \Longrightarrow y=\frac{-x}{6}+\frac{7}{6} .
$$

