Math 10A with Professor Stankova Worksheet, Discussion #6; Friday, 9/8/2017GSI name: Roy Zhao

Domain

Problems

1. Find the domain of $\ln(x-3)$.

Solution: The domain of $\ln x$ is $(0, \infty)$. The linear shift x - 3 shifts the function to the right by 3 and so we add 3 to the domain. This means that the domain of $\ln(x-3)$ is $(0+3, \infty+3) = (3, \infty)$.

2. Find the domain of $\sqrt{3x-3}$.

Solution: The domain of \sqrt{x} is $[0, \infty)$. The linear shift 3x - 3 acts by first shifting the graph right by 3, then contracting by a factor of 3. What this does to the domain is add 3 and then divide by 3, so we get $[3, \infty)$ and then $[1, \infty)$ as the final domain.

3. Find the domain of $\frac{1}{2x+1}$.

Solution: The domain is when the denominator is nonzero, so when $2x + 1 \neq 0$ or $x \neq \frac{-1}{2}$. So the domain is $\mathbb{R} \setminus \{-1/2\}$.

4. Find the domain of $\sqrt{3-x}$.

Solution: The domain is when $3 - x \ge 0$ or when $x \le 3$, meaning $(-\infty, 3]$.

5. Find the domain of e^{2x+1} .

Solution: The domain of e^x is everything and so shifting it to the left and right and compressing it doesn't change it. So the domain is \mathbb{R} .

6. Find the domain of $\sqrt{9 - (2x+3)^2}$.

Solution: The domain of $\sqrt{9-x^2}$ is when $9-x^2 \ge 0$ or when $x^2 \le 9$ or $x \in [-3,3]$. Then applying the linear shift 2x + 3 first shifts the domain to the left by 3 and then compresses it by a factor of 2. Doing so gives [-3,3], then [-6,0], then finally [-3,0].

7. Find the domain of $\sqrt{(3x+1)^2-4}$.

Solution: The domain of $\sqrt{x^2 - 4}$ is when $x^2 \ge 4$ or $(-\infty, -2] \cup [2, \infty)$. The linear shift 3x + 1 shifts the domain left by 1 and then compresses it by a factor of 3. This gives $(-\infty, -3] \cup [1, \infty)$ and then $(-\infty, -1] \cup [1/3, \infty)$ as the final answer.

8. Find the domain of $\sqrt{4 - (1 - 2x)^2}$.

Solution: The domain of $\sqrt{4 - x^2}$ is [-2, 2]. Then the linear transformation 1 - 2x = -2x + 1 shifts the graph left by 1 and then reflects it across the y axis and compresses it by a factor of 2. So we go from [-2, 2] to [-3, 1], to [-1, 3] to [-1/2, 3/2].

Range

Problems

9. Find the range of $2e^x + 1$.

Solution: The range of e^x is $(0, \infty)$. The linear shift first stretches the range by 2 then shifts it up 1 to get $(0, \infty)$ again and then $(1, \infty)$ as the final range.

10. Find the range of $6\sin x + 3$.

Solution: The range of $\sin x$ is [-1,1]. The range after multiplying it by 6 and adding 3 is [-6,6] and then [-3,9].

11. Find the range of $-2\cos x + 1$.

Solution: The range of $\cos x$ is [-1, 1] and multiplying by -2 gives [-2, 2]. Finally we add 1 to the range to get [-1, 3].

12. Find the range of $5 \arctan(x) - \pi$.

Solution: The range for $\arctan(x)$ is $(-\pi/2, \pi/2)$ so the range of $5 \arctan(x) - \pi$ is $(-5\pi/2 - \pi, 5\pi/2 - \pi) = (-7\pi/2, 3\pi/2).$

13. Find the range of $\frac{3}{x+2} - 1$.

Solution: The range of $\frac{1}{x}$ is $\mathbb{R}\setminus\{0\}$. The shift of x+2 changes the domain but not the range. Then multiply by 3 and subtracting 1 gives a range of $\mathbb{R}\setminus\{3\cdot 0-1\} = \mathbb{R}\setminus\{-1\}$.

14. Find the range of $2 \arcsin(6x) + 1$.

Solution: The range of $\arcsin(x)$ is $[-\pi/2, \pi/2]$. Multiplying the range by 2 and adding 1 gives a range of $[-\pi + 1, \pi + 1]$.

15. Find the range of $2 - \arccos(3x+2)$.

Solution: The range of $\arccos(x)$ is $[0, \pi]$. The linear shift 3x + 2 shifts the domain but not the range. So the new range is $[2 - \pi, 2 - 0] = [2 - \pi, 2]$.

16. Find the range of $-4\sqrt{x} + 2$.

Solution: The range of \sqrt{x} is $[0, \infty)$ so the range of $-4\sqrt{x}+2$ is $(-4\infty+2, -4\cdot 0+2] = (-\infty, 2]$.

Tangent Lines

Problems

17. Find the tangent line to 3x - 2 at x = -2.

Solution: The equation is $y - y_0 = m(x - x_0)$ and so the line is $y - (3 \cdot -2 - 2) = 3(x - (-2)) \implies y = 3x - 2.$

18. Find the tangent line to $-x^2$ at x = 1.

Solution: Using the point slope formula with $f(x) = -x^2$ gives $y - f(1) = f'(1)(x - 1) \implies y + 1 = -2(x - 1) \implies y = -2x + 1.$

19. Find the tangent line to $\frac{1}{2x}$ at x = -4.

Solution: We use the point slope formula with f(x) = 1/(2x) and get $y - f(-4) = f'(-4)(x - (-4)) \implies y - (-1/8) = -1/32(x + 4) \implies y = \frac{-x}{32} - \frac{1}{4}.$

20. Find the tangent line to x^3 at x = -1.

Solution: We use the point slope formula with
$$f(x) = x^3$$
 to get
 $y - f(-1) = f'(-1)(x - (-1)) \implies y - (-1) = 3(-1)^2(x+1) \implies y = 3x + 2.$

21. Find the tangent line to \sqrt{x} at x = 9.

Solution: Use the point slope formula with $f(x) = \sqrt{x}$ to get $y - f(9) = f'(9)(x - 9) \implies y - 3 = \frac{1}{6}(x - 9) \implies y = \frac{x}{6} + \frac{3}{2}.$

22. Find the tangent line to $6e^x$ at x = 2.

Solution: Use the point slope formula to get $y - f(2) = f'(2)(x - 2) \implies y - 6e^2 = 6e^2(x - 2) \implies y = 6e^2x - 6e^2.$ 23. Find the tangent line to $4 \cdot 7^x$ at x = 1.

Solution: We use the point slope formula to get $y - f(1) = f'(1)(x - 1) \implies y - 28 = 28 \ln 7(x - 1) \implies y = 28x \ln 7 + 28 - 28 \ln 7.$

24. Find the tangent line to $(e^x + 2)(e^x - 2)$ at x = 2.

Solution: We can use the point slope formula with the expression expanded to get $f(x) = e^{2x} - 4$:

$$y - f(2) = f'(2)(x - 2) \implies y - e^4 + 4 = 2e^4(x - 2) \implies y = 2e^4x - 3e^4 - 4.$$

25. Find the tangent line to $\frac{x^2-9}{x-3}$ at x = 0.

Solution: We can simplify the function to get $\frac{x^2-9}{x-3} = x+3$. The tangent line to a line is just that line, so y = x+3.

26. Find the tangent line to $\sqrt[3]{x}/\sqrt{x}$ at x = 1.

Solution: We can simplify it to get $x^{-1/6}$. With this, we can calculate the tangent line with the point slope to get

$$y - 1 = \frac{-1}{6}(x - 1) \implies y = \frac{-x}{6} + \frac{7}{6}$$